Современные финансовые средства

Ps-j.ru

Основные понятия, связанные с финансовыми операциями

Процентная ставка показывает степень интенсивности изменения стоимости денег во времени. Абсолютная величина этого изменения называется процентом

и измеряется в денежных единицах (например, рублях), обозначаемых I. Если обозначить будущую сумму S, а современную (или первоначальную) P, то I = S – P. Процентная ставка i – относительная величина, измеряемая в десятичных дробях или %, она определяется делением процентов на первоначальную сумму:

. (2.1.1)

Можно заметить, что формула расчета процентной ставки идентична расчету статистического показателя «темп прироста». Действительно, если абсолютная сумма процента (I) представляет собой прирост современной величины, то отношение этого прироста к самой современной величине и будет темпом прироста перовначальной суммы. Наращение первоначальной суммы по процентной ставке называется декурсивным

методом начисления процентов.

Кроме процентной существует учетная ставка

d (другое название – ставка дисконта), величина которой определяется по формуле

, (2.1.2)

где D – сумма дисконта.

Сравнивая формулы (2.1.2) и (2.1.3), можно заметить, что сумма процентов I и величина дисконта D определяются одинаковым образом – как разница между будущей и современной стоимостями. Однако смысл, вкладываемый в эти термины, неодинаков. Если в первом случае речь идет о приросте текущей стоимости, своего рода «наценке», то во втором определяется снижение будущей стоимости, «скидка» с ее величины. (Diskont в переводе с немецкого означает «скидка».) Неудивительно, что основной областью применения учетной ставки является дисконтирование, процесс, обратный по отношению к начислению процентов. Тем не менее иногда учетная ставка используется и для наращения. В этом случае говорят об антисипативных

процентах.

При помощи рассмотренных выше ставок могут начисляться как простые, так и сложные проценты. При начислении простых процентов наращение первоначальной суммы происходит в арифметической прогрессии, а при начислении сложных процентов – в геометрической. Вначале более подробно рассмотрим операции с простыми процентами.

Начисление простых декурсивных и антисипативных процентов производится по различным формулам:

декурсивные проценты

; (2.1.3)

антисипативные проценты

, (2.1.4)

где n – продолжительность ссуды, измеренная в годах.

Для упрощения вычислений вторые сомножители в формулах (2.1.3) и (2.1.4) называются множителями наращенияпростых процентов: (1 + ni) – множитель наращения декурсивных процентов; 1/(1 – nd) – множитель наращения антисипативных процентов.

Например, ссуда в размере 1 млн. руб. выдается сроком на 0,5 года под 30 % годовых. В случае декурсивных процентов наращенная сумма (Si) будет равна 1,15 млн. руб. (1(1 + 0,5 × 0,3), а сумма начисленных процентов (I) – 0,15 млн. руб. (1,15 – 1). Если же начислять проценты по антисипативному методу, то наращенная величина (Sd) составит 1,176 млн. руб. (1(1/(1 – 0,5 × 0,3), а сумма процентов (D) – 0,176 млн. руб. Наращение по антисипативному методу всегда происходит более быстрыми темпами, чем при использовании процентной ставки. Поэтому банки используют этот метод для начисления процентов по выдаваемым ими ссудам в периоды высокой инфляции. Однако нужно отметить существенный недостаток антисипативного метода: как видно из формулы (2.1.4), при n = 1/d, знаменатель дроби обращается в нуль и выражение теряет смысл. Перейти на страницу: 1 2 3 4 5 6 7