Современные финансовые средства

Ps-j.ru

Основные понятия, связанные с финансовыми операциями

(очевидно, что при непрерывном начислении речь может идти только о сложных процентах) обозначается буквой δ (читается «дельта»), часто этот показатель называют силой роста

. Формула наращения по непрерывной процентной ставке имеет вид

, (2.1.19)

где e – основание натурального логарифма (≈ 2,71828 .); edn – множитель наращения непрерывных процентов.

Например, на сколько возрастет через три года сумма 250 тыс. руб., если сегодня положить ее на банковский депозит под 15 % годовых, начисляемых непрерывно?

S = 250 × e^(0,15 × 3) = 392,1 тыс. руб.

Для непрерывных процентов не существует различий между процентной и учетной ставками, поскольку сила роста – универсальный показатель. Однако наряду с постоянной силой роста может использоваться переменная процентная ставка, величина которой меняется по заданному закону (математической функции). В этом случае можно строить очень мощные имитационные модели, однако математический аппарат расчета таких моделей достаточно сложен и не рассматривается в настоящем пособии, так же как и начисление процентов по переменной непрерывной процентной ставке.

Непрерывное дисконтирование с использованием постоянной силы роста выполняется по формуле

, (2.1.20)

где 1/edn – дисконтный множитель дисконтирования по силе роста.

Например, в результате осуществления инвестиционного проекта планируется получить через два года доход в размере 15 млн. руб. Чему будет равна приведенная стоимость этих денег в сегодняшних условиях, если сила роста составляет 22 % годовых?

P = 15/e^(0,22 × 2) = 9,66 млн. руб. Перейти на страницу: 3 4 5 6 7 8